
 USN

 - 1 Herer wan

 Third Semester B.E. Degree Examination, Aug./Sept. 2020

 Third Semester B.E. Degree Examination, Aug./Sept. 2020 Digital Electronics

 Digital Electronics}Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Construct a truth table and write the Boolean output for a single output 2 which is to be true when the input variables a and b are true and when b is false, but a and c are true. Implement the Boolean expression using gates.
(04 Marks)
b. Convert the given Boolean function :
(i) $f_{1}=f(a, b, c, d)=(a+\vec{b}+c)(\bar{a}+d)$ into maxterm canonical form
(ii) $f_{2}=f(w, x, y, z)=w x+y z$ into minterm canonical form.
(08 Marks)
c. Identify the prime implicants and essential prime implicants for the following expression.
(i) $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma(1,5,7,8,9,10,11,13,15)$
(ii) $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi(0,2,3,8,9,10,12,14)$
(08 Marks)

OR

2 a. Find the minimal sum and minimal product for the following Boolean function using Kmap.

$$
\mathrm{Y}=\mathrm{f}(\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x})=\Sigma(1,5,7,9,13,15)+\Sigma \mathrm{d}(8,10,11,14)
$$

(08 Marks)
b. Simplify the following expression using Quine McCluskey method and find the minimal sum using PI reduction table.

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\Sigma(2,3,4,5,13,15)+\Sigma \mathrm{d}(8,9,10,11)
$$

(12 Marks)

Module-2

3 a. Design a circuit that will find the 2 's complement of a three bit binary number. Draw the logic diagram for the reduced equations.
(08 Marks)
b. Draw the logic diagram, function table and IEEE logic symbol of a 2 to 4 line decoder in 74139 IC. Realize the Boolean function $\mathrm{X}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(0,3,5,6)$ using 74139 .
(12 Marks)

OR

4 a. Realize the following Boolean function using $4: 1$ multiplexer with a, b as select lines.

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\Sigma(0,3,4,5,7,9,13,15)
$$

(06 Marks)
b. Design a BCD adder using 7483 .
(06 Marks)
c. Design a two bit magnitude comparator.
(08 Marks)

Module-3

5 a. Explain the working of a SR latch as a switch debouncer with necessary circuit and timing diagram.
(06 Marks)
b. Explain the working of master slave JK flip flop with the help of a logic diagram, function table, logic symbol and timing diagram.
(10 Marks)
c. Explain race around condition and how it is overcome.
(04 Marks)

OR

6 a. Explain with timing diagram for (i) SR flip flop and (ii) D flip flop.
(06 Marks)
b. Derive the characteristic equation for JK and T flip flop.
(06 Marks)
c. With a neat logic diagram, explain the working of positive edge triggered D flip flop. Also draw the timing diagram.
(08 Marks)

Module-4

7 a. Design a register using four multiplexer and positive edge triggered D flip flop having the behavior specified in the table below.

S_{1}	$\mathrm{~S}_{0}$	Register operation
0	0	Hole
0	1	Synchronous clear
1	0	Complement contents
1	1	Circular shift right.

(08 Marks)
b. Illustrate the operation of 4-bit binary ripple counter using positive edge triggered D flip flop without a count enable line.
(08 Marks)
c. Design a MOD 7 twisted ring counter. Write the logic diagram and counting sequence.
(04 Marks)

OR

8 a. Design a Mod 6 counter whose counting sequence is $000,001,100,110,111,101,000 \ldots$. by using positive edge triggered JK flip flop.
(10 Marks)
b. Show how an 8 bit synchronous binary counter can be constructed from two 4 bit synchronous binary counters.
c. Explain PIPO and PISO shift register with relevant logic diagrams.
(06 Marks)

Module-5

9 a. Explain the Mealy model and Moore model of a clocked synchronous sequential network.
(08 Marks)
b. Give the logic diagram shown in Fig.Q9(b).
(i) Derive the excitation and output equations.
(ii) Write the next state equations
(iii) Construct a state trânsition table
(iv) Draw the state diagram.

Fig.Q9(b)
(12 Marks)

OR

10 a. Construct mealy state diagram that will detect input sequence 10110, when input pattern is detected, Z is asserted high. Give state diagram for each state.
(10 Marks)
b. Design a sequential circuit for a state diagram shown in Fig.Q10(b) using JK flip flop.

Fig.Q10(b)

